MDA of TF2 Board Game

Group 1: Lincoln Freedman, Yuzhe Xie, Lanqing Gao, Serena Yang

Team Log:

https://docs.google.com/document/d/1hk5714) vZjtmSp7jNeuCHimlrwmCwZufEf UCIIHy8/ed
it?tab=t.0

Trello Board: https://trello.com/b/y3nJIvLn/gsnd-5110-project-2-group-1

MDA Analysis

TF2 Overview
Keywords: Tactical, Fellowship, and Individualistic

Team Fortress 2 (TF2) embodies a unique blend of visual and gameplay elements that
support the following qualities:

Despite being a fast-paced shooter, TF2 emphasizes coordination between different
character classes to achieve objectives. Players must think strategically about positioning, timing,
and roles, often making use of specific class strengths to control the battlefield. The game’s class
system creates a strong tactical layer, where each character has a specific role to play—be it the
Engineer building sentries, the Medic healing, or the Spy infiltrating enemy lines. This requires
players to adapt their tactics based on the class makeup of both their team and the opponents.

Each class in TF2 is richly designed with unique personalities and visual styles. This
individuality extends beyond appearance, as each class has a distinct playstyle—such as the
Medic's healing strength or the Scout's agility—allowing players to express themselves through
their preferred class. The game rewards individual skills, from mastering trick shots with the
Sniper to perfecting the timing of headshots. This mastery over individual mechanics highlights
the player's unique approach and skill set.

The individualistic aspect of TF2 gives the player a sensation of heated combat in a
multiplayer battlefield. In our prototype, such a sensation is transformed into the excitement

created by the randomness of dice.

https://docs.google.com/document/d/1hk5714j_vZjtmSp7jNeuCHimlrwmCwZufEf_UCIlHy8/edit?tab=t.0
https://docs.google.com/document/d/1hk5714j_vZjtmSp7jNeuCHimlrwmCwZufEf_UCIlHy8/edit?tab=t.0
https://trello.com/b/y3nJIvLn/gsnd-5110-project-2-group-1

In summary, TF2 blends tactical depth with a strong sense of individuality while
maintaining fellowship and collaboration, encouraging players to use their characters’ unique

traits while strategically contributing to their team's success.

Our Adaptation

To actualize the game essence, we first analyzed each class’s tactical value in a multiplayer
setting from our gaming experience and professional plays. We identified key parameters that
influence each class's performance, which are speed and range. The design question that can be
answered by the prototype is how these two factors should be balanced in the game mode of
capture points. While vertical space in 3D is also a primary factor that affects the balancing of
each class in the original TF2, we omitted this factor in our prototype for the consideration of
both complexity and not relating to our purpose.

We selected classes in TF2 that featured their mobility or shooting range. Though the
balancing of all classes in TF2 is affected by their damage, range, and speed, a few classes rely
heavily on them as they become their typical traits.

The classical TF2 game happens in a continuous 3D space with a linear map for
capturing points in order. Our prototype divides the entire continuous space into multiple discrete
spaces to represent possible encounters in different routes. This allows us to replicate the macro
view of dynamics happening in a TF2 game and evaluate each class’s performance under various
strategic placements.

The classes in our prototype build on the abstraction of original classes in TF2. Due to
our primary focus lies on the tactical aspect of TF2, attacks and weapons are valued through
class abilities and modifiers. The modifier enables us to quantify the performance of class
weapons. For example, Soldier has +2 modifier when facing more than 1 enemy. With such
adaptation, the player would move each of their characters as chess pieces and precalculate their
chance of winning while either taking risks in aggression or strategically countering the enemy

formation.

The primary parameter that we are focusing on in this prototype is the class design. Thus, our
prototype will be most useful for analyzing how the classes interact with each other (synergies,

counters, etc.).

Prototype Design

Our Game

The game includes different classes each with different characteristics that serve as units with
different functions in the game. While two opposing teams contend against each other, the team
with better coordination and formation has a better chance of winning. The formation of the team
also ensures the team is versatile in every situation in the battle. The element of shooter
mechanics from TF2 is replaced with randomness, representing the possibility for one character

to kill another in as simple a manner as possible.

Team Distribution: 1 vs 1 format in which each player controls one ‘team’. there are 5 classes
to choose from in our game. Each player chooses which classes they want each of their

characters to be at the start of each game.

The player with the offensive token of a gun is the offensive player.
Offensive and Defensive:

The player with the gun token is offensive while the other player without the token is defensive.
The offensive player takes their turn according to the following phases.

Game Start

e Both players must first choose the composition of units that they want to start the game
with. This can be any configuration of five units, such as one of each class, five of one
unit, or anything in-between.

e Players should write down their starting compositions and then reveal them to each other
at the same time.

e The red player must then place their units freely anywhere on the map, either together or
split in any way.

e The blue player takes the first turn.

Turn Phase Order

1. Capture/Revert:
e For blue player: If any number of blue characters you control stand in the capture
zone, add that number of blue capture tokens to the capture zone.

For red player: If any number of red characters you control stand in the capture
zone, remove that number of blue capture tokens on the capture zone.

If any capture zone has a blue capture token more than or equal to 5, remove all
capture tokens on it. Place a blue flag token on it, meaning it has been captured.
Fully captured zones can never be uncaptured.

2. Move Character:

The player may move each character on the board (including those within the
respawn area at this current moment) to zones they can reach according to the
character’s movement speed. You cannot move them into your opponent’s
spawn area. You also cannot move them through zones occupied by enemy units
(you can move them into these zones, but not back out).

3. Respawn Character:

If the number of characters alive controlled by the player is less than the
character limit (5) of the game, the player may revive a character of any class
and put them into the player’s respawn area. The player may repeat the previous
step until the number of characters they control reaches the maximum limit.

4. Sniping Phase (only occurs during the blue player’s turn):

Both players can choose targets for their snipers to snipe, if any are in range. Note
that this means the red player’s snipers shoot during the blue player’s turn,

instead of their own. After sniping rolls, remove any character that died from the
board.

5. Combat:

For each zone with characters from both teams, a battle happens between them.
Roll a d6 for each character in the zone. Then add the modifier to each player’s
rolls in accordance with their classes. Compare the sum of dice from both teams,
the team with the higher total roll wins the battle. If players get the same roll
result, everyone dies.

All characters on the losing team in the zone are dead. Remove them from the
board.

6. Exchange:
e Pass the gun token to your opponent. You now become defensive while your
opponent is offensive and takes their turn.
e Increase the turn counter by 1.

Winning/Losing:

Blue player wins if they successfully capture all capture zones before the turn counter reaches
40.

Red player wins if they successfully prevent blue players from capturing their zones before the
turn counter reaches 40.

Classes

The number in the top right of the class cards shows the movement speed of units of that class.
The number in the bottom left shows the modifier that it adds in battles. These values are also
listed for each class below.

Classes (current finalized version after playtests and Adjustments):
Design Justifications for Each Class:

e Scout: The most agile class with fast moving pace and captures zones faster than other
classes. Known for running all round the map at a quick pace to harass enemies and
capture zones.

e Soldier: Moderate health and speed, can attack quite effectively for both the offensive
and defensive team, making him one of the most well-balanced in the game. Soldiers are
known for their direct combat adaptability, making them helpful in group combats.

e Sniper: The best long ranged class, specializing in neutralizing targets from a distance.
Sniper is very effective at targeting specialized classes such as Medic that add positive
group modifiers.

e Medic: The main healer in the game. Since our prototype does not feature health, we

decided to make him add modifiers to attacking units to simulate the effect of “instant

healing” during combat. Medic moves at a decent pace allowing him to stay close to
other teammates and protect them when needed.

e Heavy: Moves slowly but very strong defensively. Known for being used as an “area of
denial.”

Classes:
Scout:
Speed =3
Modifier = 0
Scout counts as 2 characters when capturing a zone.
Soldier:
Speed = 2.
Modifier = +2 when facing two or more enemies, +1 otherwise
Sniper:
Speed = 2;
Modifier = -3
(Snipe) Can snipe a target enemy character in zones within range of 2 during Sniping
phase. Roll a dice. If the dice is 4 or higher, target is killed and removed from the game.
Snipers cannot shoot enemy units inside their spawn point. Furthermore, the sniper
cannot shoot if there is any enemy unit within the same zone as it.
Medic:
Speed = 2;
Modifier = -3 + (2 * number of non-medic allies in the same zone)
(Pocket Healing) Can move three zones if it moves with a scout.
Heavy:
Speed =1
Modifier = +4 on Defensive turn, 0 on Offensive turn

1. Scout can move three zones and capture zones double the speed of other classes.

2. Soldier gains dice roll advantage when fighting multiple enemy characters. (+2 modifier
for 2 or more enemies)

3. Sniper has -3 modifier in combat. Sniper can only snipe on defensive turn. Sniper can
only snipe enemies in adjacent zones. When sniping, roll a d6. Enemy is killed when the
roll is 4 or higher. Blue team can snipe on offensive turn and red team snipe on defensive
turn.

4. Medic (Heal) has disadvantage on all combat rolls (-3 modifier), but grants an increased
dice modifier for each ally in the same zone (+2 modifier to allies). Cannot heal other
medics.

Playtest and Adjustments

Initial Board Design (two versions to choose from)

We had two different designs for the game board.
Version 1 involves moving in a grid system in addition to using the class abilities.
Combat happens whenever two units clash.

e Version 2 excludes movement across grids altogether where units travel from area to area.
Combat breaks out simultaneously for every character on the opponent team in the same
zone.

e Here is a picture of the initial game board for version 1:

L1 |

E—

50

e After a complete failure of trying to use the grid version because it takes forever to
progress in things since characters die very easily and will be sent back to spawn point
too frequently, we decided to use version 2 instead. At the time of this playtest, the
classes had the following designs:

% Scout: speed =2 grid, d6

% Soldier: speed = 1 grid, AOE shockwave (shaped like a cross) range = 2, d6

% Medic: speed = 1 grid, Healing range = 1, d6-3

% Sniper: speed = 1 grid, sniping range = 5, d6-4 in the same combat zone, roll 5-6
to succeed in sniping

e As we can see above, another clear issue with the initial class design is that some classes
lack differentiation. For instance in practice, scout and soldier played very similarly
because the attack range of soldier limits the position where the shockwave can take hit
and scout moving 1 extra unit doesn’t make him fast enough, at some point the two
became very similar in game play. Another major issue was that soldier’s cross shaped

AOE attack made it difficult to plan its movement and position so that it will attack the
enemy at the right spot.

e So overall, this made board 1 our better alternative, which at the time still needed to be
tested.

Board Design Improved (previous version 2)
e After the failed version 1, version 2 is being tested.
e The quick sketch looked like this:

]
i
-
e
e

nE

e FEach area is mapped out with different colors to simulate different battle zones. Units in
the same battle zone fight each other. When died, characters respwan from the spawn
area.

e At the time, we were playing with almost a paper prototype, drawing how each unit
moves by simply writing and erasing on a drawing tablet.

e Despite the primitive setting, this game design with the board was proven to be much
more effective. Combats happened much faster and progression of the game was made.
Because grid was no longer a restraints and every unit in the same zone would attack
each other, AOE attack of soldier was also canceled. Medic’s ability also had to be
changed accordingly since healing range was no long relavent given he has to be in the
same zone with the character he is healing.

e At the time, rules of classes were changed to the following:

% Scout: speed = 2 zones, d6
% Soldier: speed = 1 zone, d6, +1 for every enemy unit in the same zone
% Medic: speed = 1 zone, d6-3, +2 modifer on every ally unit in the same zone

% Sniper: speed = 1 zone, sniping range = 1 adjacent zone away, d6-4 in the same
combat zone, roll 5-6 to succeed in sniping.

e Mechanics in combat resolution also changed accordingly. Both players in the same zone
roll dices and whoever has the highest wins the battle, hence killing all the enemy units in
the same zone.

Despite the map improvement, abilities of the classes still had significant problems.

For instance, soldier and medic become overly powerful when paired up. Since players
are allowed to repeat classes as long they control a total of 4 characters (at the time), the
game is essentially broken when such combination of classes are placed together.

e These issues needed to be fixed, so we made adjustments and entered the next stage of
play testing.

e In addition, we built our game in Tabletop Simulator which made testing easier. Each
piece is easier to move around and visualize. Dice rolling and calculation was convenient
and us group members can run two playtest sessions at the same time separately before
rejoining for discussion.

Class Balance Modeling

Because the primary element of TF2 that we chose to emphasize most in our prototype is
the class system, it could even be said that the primary purpose of the prototype is to test how the
classes interact with each other. One of the fundamental precepts that we discovered early on in
testing is a sort of rock-paper-scissors relationship, by which scouts counter snipers,
soldiers/medics counter scouts, and snipers counter soldiers/medics. We were pleased to see this
relationship, as it adds significant compositional & strategic depth to the game, as well as being
an accurate, albeit simplified representation of the class counters that exist in TF2.

However, as we tested more, we determined that a skilled player could often defeat a
sniper based composition using only soldier + medic. Furthermore, scouts often felt extremely
strong, even in circumstances where they should be countered according to the logic of TF2.
This led us to feel that there was an issue with the game’s balance, so we decided to numerically
model each class’ power in order to make some informed adjustments.

Initial Class Power Model

Class Speed Modifier Ability Total
Scout 2 0.5 1 3.5
Soldier 1 1 1 3
Medic 1 -3 5 3
Sniper 1 -3 4 2

For this model, the speed value was determined by the number of zones one unit could
move in one turn. The modifier value was simply determined by what base modifier would be
applied to the unit in dice battles (the scout’s value of 0.5 is averaged between 0 and 1 for
defensive and offensive battles respectively). The ability category was the most subjective and
difficult to evaluate, with all team members discussing how many points we felt each class's
special effects should be worth. From this process, we determined that the scout was too strong,
while the sniper was too weak.

This led us to make several adjustments, the first of which was to remove the scout’s +1
modifier on offensive rolls. This had initially been added to the game to make scout better at
offensively assassinating isolated snipers and medics, however after more clearly understanding
the mechanics of our own game, we realized that this wasn’t necessary in the first place, as even
2 isolated snipers already had very low odds of beating a single scout without the +1 modifier.
The next change we made was to increase the speed of all units from 1 to 2, except for scout
which was increased from 2 to 3. The intent of this was to help offset the scout's movement
advantage (effectively making it 50% faster rather than 100%), as well as to make games faster
and increase the odds of a blue victory (more on this later). In order to match this global increase
in movement speed, we also increased the range of the snipe ability from 1 to 2. Our new model
looked like this:

Second Class Power Model

Class Speed Modifier Ability Total
Scout 3 0 1 4
Soldier 2 1 1 4
Medic 2 -3 5 4
Sniper 2 -3 4 3

This version of the game felt a lot better overall. However, the sniper still felt weak, as
shown by the power model. We experimented with increasing its odds of a successful snipe from
50% to 67% as one potential way to buff the class. However, it still did not seem to solve the
fundamental issue of snipers. The snipe ability is, at best, able to kill one enemy unit per turn.

However, the fact that its range is the same as the movement of soldiers, and that it only shoots

after moving, effectively means that it can never get off a shot without being in range to be

attacked. In other words, the best scenario for the sniper is to kill one enemy unit, and then be
attacked the next turn. Since the average roll of a d6 is 3.5, the sniper’s effective contribution to
battle rolls is 0.5. This means that, even after killing an enemy unit, it contributes almost nothing
to the following battle, and has traded barely better than evenly.
Consider the following example scenario: 3 soldiers, 2 snipers VS. 5 soldiers. Even if the
snipe has a 67% chance of succeeding, the 5 soldier composition will, on average, only lose 1

unit. The following engagement between 4 soldiers and 3 soldiers + 2 snipers will be greatly
favored for the 4 soldiers, showing that the sniper would still be too weak even with this change.
Of course, we could increase the snipe chance even more, to 83% or even 100%, but this would
make the sniper a unit the purpose of which is essentially to trade 1 for 1 - not what we were
looking for in modeling TF2. Rather, we felt it was necessary to make some change which could
create the potential for a sniper to get off multiple shots before being forced to engage in combat.
One possibility was to increase the snipe range even further to within 3 zones. However, we felt
this might be easily exploitable, and decided on a different option.

This was to add the heavy - a new unit with a strong bonus modifier in defensive combat.
The idea behind this was that snipers need a babysitter of sorts to stay either with or in front of
them, and prevent soldiers and scouts from easily pouncing on them after they shoot.
Furthermore, we decided that the heavies should have a slow movement speed, as they do in
TF2. Tactically, this means that heavies are extremely bad at attacking enemy snipers, as their
movement is outranged by the snipe ability. Thus, if heavies are commonly used, snipers as a
direct counter will have their stock increased. In light of these changes, our final power model
looked like this:

Final Class Power Model
Class Speed Modifier Ability Total
Scout 3 0 1 4
Soldier 2 1 1 4
Medic 2 -3 5 4
Sniper 2 -3 5 4
Heavy 1 0 3 4

Team Balance
In addition to class imbalances, our game has the potential for team imbalances, due to its

asymmetrical design. Almost all of our earliest playtests resulted in a red (defensive) victory,
which led us to believe that blue side (offensive) was underpowered. In order to fix this, we had
several options of potential parameters that we could adjust. These were the number of capture
tokens needed to capture a zone, the number of capturable zones, the positions of and accessible
routes to the capturable zones, the movement speed of the units, and finally, the number of turns

before a red victory.

The first change which we chose to implement was to increase the movement speed of all
units by 1. This was, of course, an extremely significant buff to blue side, as it reduced the
number of turns that blue units would have to waste in transit to capturable zones. Following
this, we also decided to reduce the number of capture tokens needed to fully capture a zone from
6 to 5. This change was especially important, because it allowed a full non-scout army to capture
a zone in a single turn, rather than two turns. We had come across multiple scenarios while
playtesting in which a red player would turtle with a strong battle composition (typically 4

soldiers + 1 medic) in the capturable zone closest to their base (pictured below).

Since this zone was within two movement range of the red respawn point, even if blue

players won a critical engagement on the point, they would not be able to fully capture it. Rather
they would only be able to place 5 capture tokens on the point before the red player’s entire
respawned army could engage once again. If each battle was viewed as a coin flip, then the blue
player would essentially need to win two in a row (25% chance) to ever capture the final point.
After changing the number of capture tokens needed to fully capture to 5, a single battle victory
would suffice.

We attempted to use this form of ‘coin flip” modeling further to determine the probability
of a blue victory within a certain number of turns. To this end, we began with a simplified and

generalized version of a common scenario that we had observed during playtesting - one in

which the blue player had already captured all three outer zones. Furthermore, within this
scenario the blue player had just lost their entire army, and was respawning everything in base
(this commonly occurred because blue players would use scouts to capture the outer zones,
before sacrificing them to remake a stronger fighting composition of soldier medic which could
actually break the final capture target). The red player would start with their entire army on the
final capturable zone, and would take the first turn (because the blue player would have to
actively attack with their scouts to sac them, and afterwards pass the turn to red). The red player
would then move their entire army two spaces forward in order to block the blue player’s
advance. Since the blue player would have to spend their turn respawning an army after that
(units cannot move on the same turn that they are respawned), the red player would get one more

turn to move, allowing them to reach this zone:

7

Ay

1

1

1

1

1

5
=

I
1
1
1

From here, the red army can always prevent a blue advance, even if the blue player
attempts to use scouts. This means that an engagement was guaranteed to occur on the red
player’s following turn. 50% of the time, the blue player would lose this engagement, and would
effectively be sent back to square one with four less turns to work with. The other half of the
time, the blue player would win the battle. From here, it would take them four more turns (only
two of their own movement phases) to reach the final capturable zone (unless they were using

scouts, which would make their odds of winning a battle in the first place drastically worse than

a coin flip). This would give enough time for the red player to respawn their entire army, and still
fight the red army on the capture target (this is only possible because the target is within two
movement of the red base). This battle is another coin flip, with a 50% chance of resulting in a
blue game victory, and a 50% chance of sending the blue player back to spawn with 8 less turns
to work with. We created a flowchart in Machinations to simulate this scenario. The

machinations link is available here.
VSirP@a e s I ha

a
50%,
e ®
4wms First Baftle aimn 1
Sgtond Battle 2 number of times
Simulation Start captured

Gar [y

/N—-[]

*
& —
Tespawn x A 2

~ ~

Config 100/100 Play Reset Predict Balance Debugger Open Chart

(NOTE: the design of the flowchart is very inefficient and can be inaccurate under a very rare

circumstance, but we couldn’t figure out a better way due to our inexperience with the software).

https://my.machinations.io/d/tf2-probability/3598d56694d211efa81906fdf218a24f

From this, we determined that the blue player in this scenario will capture the final point
and win the game in approximately 2210/96 = 23 turns. This felt not terribly imbalanced, but
definitely a bit skewed towards red, seeing as it means the blue player must capture all 3 other
zones within only 17 turns to have an even or favored chance of winning. For this reason, and to
generally reduce the degree to which the game was centered around the capturable zone close to

the red base, we chose to rearrange the map a bit.

YRS sy

In the new map, none of the capturable zones are within 2 movement range of the red
base. So that the capturable zones are not all right next to each other, we moved two others as
well. Based on our playtests, these changes seem to have made the game easier for blue, but not
so much so that red is greatly disadvantaged. However, due to fatigue and general dissatisfaction
with the Machinations simulation we had made, we decided not to attempt to model the victory
probabilities on this new map. The Machinations model was not sophisticated enough to
represent aspects of the game like sniper’s range, scout’s faster movement, or even how long it
would take on average for blue players to capture the outer zones. We ultimately ended up
feeling that Machinations was just fundamentally not the right tool for our project. We also did
not feel that trying to determine the ideal number of turns to set the red victory condition to (or

the ideal value for any other team balancing parameter) using pen & paper calculations would be

very fruitful. Instead, we just playtested more, and ended up feeling that the 40 turn win
condition, as well as all other elements of red/blue balance, were quite fair.
30% Difficulty Increase

Because this prototype is competitive, increasing its difficulty is not a very
straightforward thing to do. That we could think of, there were three completely different routes
we could take to make the game harder:

- Make the game more difficult for either blue or red side. Of course, this would have the
side effect of making the game easier for the other one.

- Make one particular class 30% stronger. This option was suggested to us by the professor.

- Make the game more complex. People will often say that more complex competitive
games are more difficult, IE: chess compared to checkers.

Regarding the first option, we would say that we have already outlined numerous ways in
which the game can be made more or less difficult for one side throughout the ‘team balancing’
section. The version of the prototype that we had before rearranging the map, for example, was
certainly more difficult for blue, though probably not by 30%. We could also simply increase or
decrease the number of turns necessary to trigger a red victory. Unfortunately, our Machinations
simulation outputs the average number of turns needed to capture a zone, not the probability that
a zone will be captured within a certain number of turns (let alone the probability that the game
will be won within a number of turns). Even without being experts in statistics, we are fairly
confident that decreasing the number of turns by 30% (ie: red player wins after 28 turns) would
result in a much greater than 30% decrease in the probability of a blue victory. We could also
argue that adding the heavy class resulted in an increase in complexity, making the game more
difficult. However, numerically quantifying this increase would be even more difficult to do.

For these reasons, we chose to pursue option #2 - to increase the power level of
individual classes. To this end, we used an online dice calculator to determine that the chance of
a d6 rolling higher than a d6 +1 is 27.78%. Furthermore, the chance of the d6 rolling exactly
equal to the d6 +1 is 13.89%. 13.89%. Under the rules of the game, equal rolls cause all units on
both sides to die, so we can essentially count this as a half good outcome for both sides. The
chance of a good outcome for the d6 is therefore 27.78% + (13.89% / 2) = 34.725%. Naturally,
the chance for a good outcome (plus half the chance for an even outcome) between two d6 +1 is

50%. Comparing these two values, we found that 50/34.725 = 1.44, meaning that the d6 +1 is

44% better than the d6. This value wasn’t the ideal 30% we were looking for, so we tried
comparing d6 to d6 + 0.5 as well. Performing the same calculations (minus the part about even
outcomes, since the 0.5 prevents those), we found that d6 + 0.5 has a 41.67% chance of winning.
Since 50/41.67 = 1.2, the d6 + 0.5 is effectively 20% better.

The coveted 30% lies roughly in between the values of 20% and 44%. We thus concluded
that a unit with +0.5 half the time and + 1 the other half would be approximately 30% better than
other units. Fortunately our game already includes a conditional method for giving units modifier
bonuses half of the time - this being the distinction of offensive and defensive turns. We could
simply give each class + 1 on offensive combat rolls and +0.5 on defensive ones, thereby making
each of them about 30% overpowered. However, this would not be a very interesting way to
fulfill the requirement. Instead, we chose to give this bonus to each class in slightly different
ways, as follows:

- Scout: We chose to simply give scout back its + 1 on offensive combat rolls, alongside
the +0.5 on defensive ones. This fits the class identity of an aggressive unit that is
stronger at attacking than defending well.

- Heavy: For this big guy, we chose to simply give him the opposite; +0.5 on offensive
rolls, and +1 on defensive rolls. This accentuates the heavy’s class identity of defensive
play and acting as an ‘area of denial” even further.

- Soldier: The soldier’s rule was slightly more difficult to come up with. We decided on
giving it +0.5 all the time, and an additional +0.5 when it is fighting 3 or more enemy
units. The reason we chose 3 or more instead of 2 (which is the threshold which activates
its existing +1 modifier) is because our playtests have shown that large fights are
common, and the soldier tends to face 2 or more enemy units in combat significantly
more than half the time.

- Medic: For the medic, we decided to do something somewhat similar; giving it +0.5 all of
the time, and an additional +0.5 when it has all 4 allies in combat with it. We felt that the
medic would be able to activate an ability conditional on being with 3 or more allies in
combat too often, as there is little reason for a player to split a medic away from their
main army. With this condition, the medic can at least be prevented from gaining its

additional +0.5 (and thereby being effectively 44% overpowered) when one unit has been

split off of its army, or else killed by a sniper, which we felt would be the case
approximately half the time.

Sniper: In this case, the +0.5/+1 conditional modifier gain was not needed in the first
place. The sniper’s active ability has a 50% chance of succeeding in its balanced state. By
simply changing its success condition from ‘rolls of 4 or higher’ to ‘rolls of 3 or higher’,
we could easily adjust this success chance to 66.7%. Because 66.7/50 = 1.33, this change
is enough to make the snipe ability (which is the unit’s main form of value) 33% stronger.

We decided this was close enough to our goal.

